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Abstract

Pinto, Tahyz Gomes; Pesco, Sinesio (Advisor); Barreto Jr., Abe-
lardo Borges (Co-Advisor). Pressure-pressure convolution as a
technique to analyze pressure behavior for injectivity tests
based on a radially composite model. Rio de Janeiro, 2023.
69p. Tese de Doutorado – Departamento de Matemática, Pontifícia
Universidade Católica do Rio de Janeiro.

The injectivity test is a conventional technique in reservoir engineering
used for oil recovery and formation evaluation. Typically, water is injected to
displace the existing oil by increasing the pressure in the pores. In this test,
the pressure response measurement provides valuable information about the
reservoir parameters, including permeability data. Therefore, researchers aim
to develop mathematical equations that could accurately model pressure res-
ponse during these tests for reservoir management and maintenance prediction
purposes. This work introduces a new analytical solution for injectivity test
analysis. The solution combines the pressure-pressure convolution technique
with a two-zone radial model. It allows the evaluation of the injectivity test
without precise flow rate data, as the pressure-pressure convolution exclusi-
vely uses the pressure data acquired at different positions in the reservoir. The
reservoir model comprises an injector well in the inner zone of the reservoir
and an observation well in the outer zone for measuring pressure response.
The proposed solution was validated by comparing the analytical results with
those obtained from a finite differences-based commercial simulator.

Keywords
Injectivity test; Pressure transient analysis; Radially composite reser-

voir; Pressure-pressure convolution; Green’s function.



Resumo

Pinto, Tahyz Gomes; Pesco, Sinesio; Barreto Jr., Abelardo Bor-
ges. Análise do comportamento da pressão em testes de
injetividade utilizando convolução pressão-pressão em um
reservatório radialmente composto. Rio de Janeiro, 2023. 69p.
Tese de Doutorado – Departamento de Matemática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

Teste de injetividade é uma técnica convencional em engenharia de
reservatórios, utilizada para a recuperação de óleo em reservatórios e avaliação
de formações. Geralmente utiliza-se água como fluido injetado, que resulta em
um deslocamento do óleo presente devido ao aumento da pressão nos poros.
Durante o teste, a resposta de pressão medida fornece diversas informações
sobre os parâmetros do reservatório, tal como dados de permeabilidade. Desta
forma, pesquisadores têm se dedicado em encontrar equações matemáticas que
modelam a resposta de pressão desses testes com objetivo de gerenciamento
e manutenção preditiva do reservatório. Neste trabalho, apresentamos uma
nova solução analítica para a análise de testes de injetividade, que combina
a técnica de convolução pressão-pressão com um modelo radial composto de
duas zonas. Essa solução permite avaliar o teste de injetividade mesmo na
ausência de dados precisos de vazão, uma vez que a convolução pressão-pressão
utiliza exclusivamente os dados de pressão adquiridos em diferentes posições
do reservatório. O modelo considerado consiste em dois poços, um injetor,
localizado na zona interna do reservatório, e um observador, na zona externa.
A validação da solução proposta foi realizada por meio da comparação dos
resultados analíticos com aqueles obtidos em um simulador comercial baseado
em diferenças finitas.

Palavras-chave
Testes de injetividade; Análise de transiente de pressão; Reservatórios

radialmente compostos; Convolução pressão-pressão; Funções de Green.
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1
Introduction

An injectivity test is a strategy to acquire reservoir information by
analyzing the pressure transient data gathered during fluid injection. The
injected fluid is crucial in pressurizing the reservoir and extending its longevity
[1]. It is common to use water as the injected fluid in this process. When water
is injected into the pores, it increases pressure and displaces the existing oil.
The water then stays in the pores along with the remaining oil, maintaining
the reservoir’s pressure. As the water progresses, it gradually produces a water-
flooded area surrounding the injector well. Consequently, two distinct regions
with different fluid properties are formed: the water and oil banks.

Over the years, reservoir engineering researchers have dedicated their
efforts to developing models that can efficiently simulate this system’s con-
figuration. Analytical models under different conditions were constructed to
characterize the reservoir pressure response and offer insight into geological
attributes.

For instance, Abbaszadeh and Kamal (1989) [2] introduced a method-
ology that assesses injectivity and fall-off within a single-layer oil reservoir
subject to water flooding. The study formulates analytical solutions, incor-
porating relative permeability, wellbore storage, and skin factors to elucidate
pressure and saturation distributions. Barreto Jr., Peres, and Pires (2011) [3]
discussed an analytical solution for a vertical water injection well in a lay-
ered oil reservoir with an infinite extent. The solution can compute wellbore
pressure, injection rates, and waterfront for each layer without numerical flow
simulators. The methodology also offers potential for parameter estimation us-
ing field data when a production logging rate profile is accessible. Peres et al.
(2004) [5] developed approximate analytical pressure solutions for a vertical
well with restricted entry and a non-equidistant horizontal well. The solutions
incorporated a multiphase term and utilized models with Buckley-Leverett
equations to account for a two-phase zone and the movement of the water-
front. In injectivity testing for completed horizontal wells, Peres and Reynolds
(2003) [4] developed an approximate analytical solution to ascertain wellbore
pressure in oil-bearing reservoirs. One can observe that data collection during
the injectivity test contributes to an enhanced comprehension of the reservoir’s
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attributes and enables the estimation of parameters such as permeability and
porosity.

In the well-testing literature, the radially composite scheme is a widely
used method for describing heterogeneity within a reservoir [6, 7, 8, 9]. The
model comprises a set of concentric circles. Each circle has a unique radius,
creating enclosed zones between every two circles, known as annuli. The
reservoir heterogeneity is produced by defining each created area with different
rock or fluid properties.

Loucks and Guerrero (1961) [10] proposed a theoretical model to ex-
plain pressure drop behavior in a two-zone composite reservoir with distinct
permeabilities in each zone. The model established the pressure drop varia-
tion in the internal region with time intervals, permeabilities, and inner circle
radius. Additionally, they developed a strategy for pressure distribution ap-
plicable to short and extended periods for all zones. Similarly, Satman (1985)
[11] suggested an analytical study focused on interference tests in a composite
reservoir. The study analyzes the pressure response observed at the monitor-
ing well in the reservoir’s outer region. The proposed solution contemplated a
constant flow rate, wellbore storage effects, and the skin factor at the active
well. Also, it employed the type-curve technique to estimate the relevant reser-
voir parameters. Olarewaju and Lee (1987) [6] offered solutions for interpret-
ing transient pressure tests conducted in finite and infinite-acting composite
reservoirs. Their solutions described the constant rate and pressure behaviors
observed during such tests. Moreover, they suggest interpreting pressure and
pressure derivative type curves, considering the effects of wellbore storage.
Furthermore, their study introduces the application of the composite reservoir
model to fractured wells. Thompson and Reynolds (1997) [12] investigated the
pressure-transient behavior in reservoirs with radial heterogeneity for single-
phase and multiphase flows. They examine their findings using heterogeneous
gas-condensate reservoirs and explore other multiphase flow issues. Recently,
Yan et al. (2021) [13] investigated the impact of sand migration, stress sensi-
tivity, and high-viscosity oil on the pressure behavior of weakly consolidated
offshore sand reservoirs. They classify the reservoir into two zones based on
the changes in permeability resulting from sand production. The researchers
proposed a model that combines the discrete boundary and discrete wellbore
approaches with the boundary-element method.

As shown by [2, 12, 14], the radially composite approach is often used
in studies on injectivity tests to simulate the fluid bank arrangements. Neto
et al. (2020) [15] proposed a method for evaluating wellbore pressure during
injectivity tests. They use a piston-like flow and a radially composed reservoir
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model that accommodates scenarios where the reservoir is subject to two-phase
flow, delineated into water and oil regions, or even expands to encompass
three distinct regions with a damaged zone near the well, referred to as the
skin zone. The study of Bela et al. (2022) [16] presented a novel concept
involving an impulse function for two-phase flow in single-layer reservoirs
with vertical wells. They used a radially composite reservoir approach to
show the waterfront propagation and assumed a piston-like fluid displacement.
The impulse function was later applied to determine pressure change in
multilayer reservoirs with different layer properties and single-layer reservoirs
with horizontal wells.

The previous studies primarily relied on flow rate data to investigate
heterogeneous and two-phase systems. However, an alternative technique, pre-
sented by Goode et al. (1991) [17], called pressure-pressure convolution (p-p
convolution), exclusively depending on pressure data, has been introduced and
implemented in the realm of well-testing literature. Their method involves a
new interpretation for the multiprobe tester, identifying flow regimes using
pressure readings from observation probes. A reliable flow regime identifica-
tion process is crucial for multiple probe formation testers due to local het-
erogeneities and changes near the wellbore, including permeability variations,
shale barriers, and saturation effects, significantly affecting the observed pres-
sure response. Usually, the flow rate history needs to be known for model identi-
fication. Nevertheless, the flow rate can be challenging to control and maintain
constant. Thus, they use p-p convolution to determine the flow regime and
data quality when the flow rate history is unknown.

A comprehensive study by Onur et al. (2004) [18] examined multiprobe
and packer-probe pressure-transient tests considering diverse p-p convolutions
combinations for single and multi-layered reservoir systems. They also derived
approximate equations that can be used during spherical and radial flow for
a vertical well in a single-layered system. These equations indicate which
parameter can be uniquely determined by using p-p convolution. On the other
hand, they showed that p-p convolution analysis sometimes may not yield
unique parameter estimates. As a result, they provided a technique that checks
the validity of the parameter estimate obtained from p-p convolution analysis.

In the existing literature on p-p convolution and deconvolution, a no-
table contribution was made by Kuchuk et al. (2010) [19]. They have compiled
a comprehensive overview of formation evaluation and well-testing analysis
covering a broad range of topics, including flow regimes, convolution, decon-
volution, and estimation of reservoir nonlinear parameters. Specifically, their
study of p-p convolution investigates its usage in various testing techniques,
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including multiwell pressure transient testing and wireline formation testing.
One significant aspect highlighted is the disparity between flow rate

measurements conducted at the surface and wellbore pressure measurements
taken from the downhole. This discrepancy suggests that the accuracy of flow
rate data may be compromised by uncertainties related to surface separator
conditions. Furthermore, researchers have demonstrated that wellbore storage
substantially impacts interference and pulse test measurements. The p-p
convolution is a valuable tool to mitigate these factors and reduce uncertainties.
For more information, see [19] and the references therein.

In addition, pressure measurements are typically obtained with high ac-
curacy, so p-p convolution becomes valuable for formulating solutions for flow
regime identification. Numerous studies have examined the p-p convolution
technique, contributing to a better understanding of this methodology. How-
ever, several studies focused on homogeneous systems, limiting their explo-
ration of a reservoir’s inherent heterogeneity and failing to account for the
diverse range of factors in real-world scenarios.

To the best of the author’s knowledge, most existing literature on
the pressure-pressure convolution technique focuses on homogeneous systems
operating under single-phase flow. In contrast, this study aims to extend
this method by applying it to heterogeneous systems under a single-phase
flow and homogeneous systems under a two-phase flow. This study employs
the pressure-pressure convolution technique and two-zone composite model to
analyze pressure behavior in an infinite radially composite reservoir system
during two-well interference tests. The well-testing context comprises two
wells: one active and one observation well. The observation well is used
to monitor pressure changes during production or injection. Analyzing the
pressure response in the observation well makes it possible to identify the flow
regime and estimate the reservoir parameters. A novel analytical solution is
presented by deriving a Green function to account for reservoir heterogeneity in
pressure-pressure convolution. The impulse response calculation is essential for
applying the convolution method since it allows obtaining the system response.
Therefore, Green’s function is critical to acquiring the impulse response data
and then the model interpretation. This method enables analyzing interference
tests between two wells without requiring flow rate information. It differs from
the study of Kuchuk et al. (2010) [19] p-p convolution approach, which assumes
homogeneity and applies the line source solution for each well. It also differs
from the study of Satman (1985) [11] interference test strategy, which relies
on flow data.

Furthermore, the presented formulation is built in the Laplace domain
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and inverted numerically to the time domain using the Stehfest algorithm [20].
Numerical experiments were performed to validate the research findings of
this study. The proposed model was compared to the methodology proposed
by Kuchuk et al. (2010) [19] and with a commercial simulator based on finite
differences. This comparison successfully demonstrated the applicability of the
new approach for analyzing pressure transients in a two-well interference test.
The evaluation process involved an analysis of the pressure curves, including
the Bourdet derivative assessment [21] to identify the flow regime.

This work is structured as follows: Chapter 2 provides an overview of p-p
convolution used in previous studies, including a mathematical background and
notations. Chapter 3 describes the proposed theoretical model that utilizes the
pressure-pressure convolution technique and the two-zone composite model to
analyze pressure behavior for a heterogeneous reservoir. Chapter 4 focuses on
advancing this approach, examining its application to a two-phase flow system.
Finally, in Chapter 5, the results obtained by applying the suggested approach
in Chapters 3 and 4 are discussed.



2
Mathematical Framework for Pressure-Pressure Convolution
Analysis

This study presents a new analytical solution using a method based
on the convolution operation; therefore, this chapter will provide a brief
theory about convolution operation and some of its applications in well-testing
literature.

2.1
Convolution Description

The mathematical convolution is a linear operation that generates an
output function by combining two signals: a kernel and an input function [22].
In this process, the convolution kernel is shifted over the input signal. At
each time step t, the kernel and the overlapping part of the input signal are
multiplied. This product is then integrated over the entire domain, producing
a new signal, the convolution output, that can provide valuable information
about the system’s behavior [23].

The convolution process is illustrated in Figures 2.1(a)-(c). In Figure
2.1(a), two functions are displayed: the input x(t) and the kernel g(t). Figure
2.1(b) shows x(τ) and the shifted kernel g(t − τ). Figure 2.1(c) highlights the
area under both x and g resulting from the shifting progression on t that
defines the convolution.
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0 0

2.1(a): Two functions to be convolved.

0

2.1(b): g is flipped and shifted hori-
zontally by a distance t.

0

2.1(c): The overlap area between x and g.

Figure 2.1: General illustration of a convolution operation of two functions,
x and g. The independent variable t represents time and is replaced by the
function τ to distinguish it from the time variable in the output function. The
kernel function g is mirrored and translated along the time axis by substituting
τ with t−τ . Then, the kernel is moved across the input function x for each value
of t, and at each time position, x(τ) and g(t−τ) are multiplied. The integral of
this product over the entire domain represents the output function y(t). The
shaded area refers to the interaction region between the two functions.

The convolution operation can be defined mathematically using the
following equation:

y (t) = (x ∗ g) (t) =
∫ +∞

−∞
x (τ) g (t − τ) dτ, (2-1)

in which ∗ denotes the convolution operator. Thus, (x ∗ g) symbolizes the
convolution of functions x and g at a specific time t. x(t) is an input function,
g(t) indicates the kernel, and y(t) represents the output function. The variable
τ performs as a shift parameter.

The convolution integral is crucial in analyzing reservoir models, partic-
ularly in the well-testing literature. The following sections will demonstrate
how this operation can be applied in reservoir engineering.

2.2
Pressure-Rate Convolution Description

In the well-testing literature, the convolution integral is used to analyze
the response of a reservoir model due to some force function [24]. One widely
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discussed technique is Duhamel’s principle, which offers effective methods
for formulating solutions to heat conduction and pressure diffusion problems
with time-dependent boundary conditions by using the solution corresponding
problem with time-independent boundary conditions [25].

The Duhamel principle constitutes a mathematical method for solving
non-homogeneous linear partial differential equations (PDEs). This technique
implies decomposing a non-homogeneous forcing function into a series of inputs
represented by unit impulses or unit-step functions. It is based on the principle
of superposition, wherein the response to a sum of inputs is equal to the sum
of individual responses to each input [26, 25]. The problem’s solution is a
convolution integral, combining the solution of the corresponding homogeneous
PDE with the given forcing function.

Figure 2.2 displays the scheme of Duhamel’s principle approach. In the
upper diagrams, it can be noticed that an input function δ(t), also known
as the Dirac delta, is applied to a linear and time-invariant system G. The
δ(t) function mathematically represents an instantaneous unit-impulse in time
[27]. The result is the impulse response g(t), the convolution kernel. The lower
diagram shows an arbitrary input force, x(t). This input force consists of a
combination of impulse functions that are shifted in time. The resulting output
y(t) is then obtained by convolving each system impulse response of each time-
shifted impulse input. The convolution result is a new function that reflects a
system’s linear response.

Figure 2.2: Duhamel’s integral scheme: a unit impulse force δ(t), is applied to
a linear system G. It results in an impulse response g(t). This impulse response
makes it possible to determine an outcome y(t) for any arbitrary input force
x(t).

Duhamel’s principle is commonly used in petroleum engineering litera-
ture to determine the wellbore pressure-drop solution for a variable flow rate.
This principle involves convolving the unit-rate pressure gradient response of
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the reservoir
(

∂pu

∂t

)
with the variable flow rate data (qsf ) to produce the well-

bore pressure drop (∆pw) [28, 29, 24]. The method can convert pressure in-
formation gathered during variable rates into equivalent data collected during
a constant production rate, allowing conventional pressure transient analy-
sis techniques to be used for interpretation [30]. This technique is also called
pressure-rate convolution (p-r convolution) [19] and can be mathematically
written as:

∆pw (r, t) =
∫ t

0
qsf (τ) ∂pu

∂t
(r, t − τ) dτ. (2-2)

In Equation (2-2), the term pu refers to the pressure drop at a specific
time t, resulting from the constant production of a rate measurement unit. Its
time derivative is equivalent to the unit impulse response, ∂pu

∂t
≡ g.

2.3
Pressure-Pressure Convolution Description

Another convolution-based method in well-testing studies can examine
a system’s transient pressure behavior employing only pressure functions as
convolution operation parameters. This method connects pressure measure-
ments taken at different reservoir or formation locations. This technique, called
pressure-pressure convolution analysis (p-p convolution), was initially intro-
duced by Goode et al. [17]. Since then, different studies have focused on this
approach in the well-testing literature [18, 31, 19]. The principle of this method
lies in the possibility of measuring pressure at two distinct spatial locations
apart from the source, as demonstrated by Goode et al. [17]. These pressure
regions can be distributed vertically within the formation, such as in a wireline
test, or laterally, like in an interference test. So, suppose a Cartesian x-y plane
comprising two wells, an active and an observation. In other words, an inter-
ference test in an infinite radial model is being considered. Figure 2.3 presents
an illustration.
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Figure 2.3: Two-dimensional representation of a circular reservoir with two wells
separated by a distance D.

The active well (W1) has a radius r = rw > 0. It is situated at the center
of the reservoir, precisely at the origin of the Cartesian axis. In contrast, the
observation well (W2) is located at a distance r = D away from the active well,
such that D > rw.

The formulation of p-p convolution derives from the Duhamel principle.
Consequently, the method requires knowledge of the kernel or influence func-
tion. Thus, as shown in Appendix A, the p-r convolution equation (Equation
(2-2)) can be used to find the pressure response at each well for a unit flow rate
(see Equations (A-1) and (A-3)). It is computed in the time domain. However,
when employing the Laplace transform, the convolution operation simplifies
into a scalar product between the input signal and the kernel. This process
generates two mathematical expressions in the Laplace domain with common
terms, including the flow rate term, as shown in Equations (A-2) and (A-4).
The shared terms can be eliminated by dividing one equation by the other,
deriving then the following formula to calculate the pressure response at point
D through pressure-based functions:

∆p2 (D, u) = ∆p1 (rw, u) G (rw, D, u) . (2-3)
Equation (2-3) represents the overall formula for p-p convolution in

the Laplace domain, which connects the pressure responses of active and
observation wells. In this equation, u represents the Laplace variable, and the
overlined variables indicate that they are in the Laplace domain. Using the
inverse operator of the Laplace transform, L−1, the p-p convolution formulation
is identified by:
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∆p2 (D, t) =
t∫

0

∆p1 (rw, t − τ) G (rw, D, t) dτ, (2-4)

in which G, denominated G-function, is determined as:

G = L−1
{

g2,1 (D, u)
g1,1 (rw, u)

}
, (2-5)

where g (rw, u) and g (D, u) are the Laplace transform of unit-impulse response
at the active and observation well, respectively. g (r, t) corresponds to a rate-
normalized pressure gradient response.

The G-function refers to the p-p convolution kernel. Based on research
from Onur et al. [31] and Goode et al. [17], analyzing the plot of the G-
function can help determine the flow regime and interpretation model needed
for parameter estimation through an examination of its log-log curve. However,
it is necessary to know the impulse functions of the geometries under study to
obtain this information.

Furthermore, the Bourdet derivative [21], also known as log-derivative
analysis, is an essential diagnostic tool for data interpretation. For the p-p
convolution case, the log-derivative analysis evaluates the log-log signature of
tG (r, t) vs. t.

The proposed model presented in the upcoming chapters utilizes
pressure-pressure convolution as an effective method to study pressure dif-
fusion in a radially composite model for two-well interference testing.



3
Pressure-Pressure Convolution for a Single-Phase Flow in a
Composite Reservoir

This chapter introduces the analytical solution developed in this study
for two-well interference testing in a radially composite reservoir using p-p
convolution. As stated previously, understanding the kernel of the pressure-
pressure convolution requires knowledge of the impulse functions associated
with the system’s geometry. Green’s functions (GFs) can determine these
essential functions.

A radial scheme composed of two concentric regions with an infinite outer
limit (Figure 3.1) is adopted to calculate the pressure response [10].

Figure 3.1: Two-region radially composite reservoir scheme.

Each region was considered to have its own uniform set of rock properties
separated by discontinuity at r = r1. Other assumptions include:

– isothermal flow and slightly compressible fluid, obeying Darcy’s law;

– fully penetrated vertical well;

– flow in radial direction only;

– reservoir parameters are constant in each region;

– skin effect and wellbore storage are neglected;

– initial reservoir pressure pi is constant and uniform;
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Based on these assumptions, the following diffusivity equation describes
the flow in each region [6]:

PDE: 1
r

∂

∂r

(
r

∂pj(r, t)
∂r

)
− 1

ηj

∂pj(r, t)
∂t

= 0, (3-1)

in which j ∈ {1, 2}. The subscript 1 represents properties in Region I, the
inner zone (rw ≤ r ≤ r1), and the subscript 2 refers to Region II, the outer
zone (r1 ≤ r). r1 is the interface radius separating the two reservoir areas.
Hydraulic diffusivity is defined as:

ηj = κj

ϕjµjctj

, (3-2)

where µ denotes fluid viscosity. ϕ, κ, and ct characterize the reservoir porosity,
the permeability, and the total compressibility of each region j, respectively.

By employing the subsequent definitions of dimensionless variables in
Equations (3-3) to (3-5), the system of partial differential equations can be
converted into a dimensionless form.

tD = κ2t

ϕ2µct2r2
w

, (3-3)

rD = r

rw

, and (3-4)

pjD
(rD, tD) = κ2h

αpqµ
[pi − pj(r, t)] with j ∈ {1, 2} (3-5)

The following expressions configure the dimensionless form for the gov-
erning equations:

Region I:

1
rD

∂

∂rD

(
rD

∂p1D
(rD, tD)
∂rD

)
− η2

η1

∂p1D
(rD, tD)
∂tD

= 0 1 < rD < r1D
(3-6)

Region II:

1
rD

∂

∂rD

(
rD

∂p2D
(rD, tD)
∂rD

)
− ∂p2D

(rD, tD)
∂tD

= 0 r1D
< rD (3-7)

The applied initial condition is given by:

IC: p1D
(rD, tD = 0) = p2D

(rD, tD = 0) = 0 (3-8)
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The inner and outer boundary conditions are provided, respectively, as:

IBC:
(

rD
∂p1D

(rD, tD)
∂rD

) ∣∣∣∣∣∣
rD=1

= −κ2

κ1
1 < rD < r1D

, (3-9)

OBC: lim
reD

→∞
p2D

(rD = reD
, tD) = 0 r1D

< rD, (3-10)

In addition, because of the continuity of pressure and flow rate across
the interface between the regions, two interface conditions are associated with
the problem [6]. These conditions are specified by:

PCC: p1D
(r−

1D
, tD) = p2D

(r+
1D

, tD), (3-11)

RCC:
(

rD
∂p1D

(rD, tD)
∂rD

) ∣∣∣∣∣∣
rD=r−

1D

= κ2

κ1

(
rD

∂p2D
(rD, tD)
∂rD

) ∣∣∣∣∣∣
rD=r+

1D

, (3-12)

in this context, PCC stands for Pressure Continuity Condition, and RCC for
Rate Continuity Condition.

The solution for a radially composite system using the p-p convolution
technique requires knowledge of the response of the physical system to an
impulsive force as the kernel of the operation. For this purpose, it is necessary
to find GF G that satisfies Equations (3-13) and (3-14).

∇2G(r, r′, t, t′) = δ(r − r′, t − t′) in Ω, (3-13)
G = 0 on ∂Ω. (3-14)

in which G(r, r′, t, t′) is the influence experienced at location (r, t) as a result
of a source at (r′, t′) [32]. Ω = {(r, r′, t, t′) | r, r′ > 0, t > t′ ≥ 0}.

The GF, denoted as G, is defined as the response of a linear operator to
an impulse input. So instead of solving the differential equations in the general
form L̂u(x) = f(x), where L̂ is a linear differential operator, and u, f are
functions, the solution can be determined since if possible find G that that
satisfies Equations (3-13) and (3-14).

Thus, considering a source located in Region I at r′, as depicted in Figure
3.2, the system of equations to derive a formulation for impulse responses
can be established by connecting the definition of GF with the dimensionless
Equations (3-6) through (3-12), whose results are presented in Appendix B.
After employing the Laplace Transform in Equations (B-1) to (B-7), the
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mathematical expressions are as ensues:

Figure 3.2: Source location

– Region I (1 < r′
D, rD < r1D

):

1
rD

∂

∂rD

(
rD

∂G1,1(rD, r′
D, u, t′

D)
∂rD

)
− η2

η1
uG1,1(rD, r′

D, u, t′
D) =

= −κ2

κ1
δ(rD − r′

D) exp(−ut′
D), (3-15)

IBC:
(

rD
∂G1,1 (rD, r′

D, u, t′
D)

∂rD

) ∣∣∣∣∣∣
rD=1

= 0; (3-16)

– Region II (r′
D < r1D

< rD < reD
):

1
rD

∂

∂rD

(
rD

∂G2,1(rD, r′
D, u, t′

D)
∂rD

)
− uG2,1(rD, r′

D, u, t′
D) = 0, (3-17)

OBC: lim
reD

→∞
G2,1(rD = reD

, r′
D, u, t′

D) = 0; (3-18)

– Interface (rD = r1D
):

PCC: G1,1(r−
1D

, r′
D, u, t′

D) = G2,1(r+
1D

, r′
D, u, t′

D), (3-19)

RCC:
(

rD
∂G1,1(rD, r′

D, u, t′
D)

∂rD

) ∣∣∣∣∣∣
rD=r−

1D

= κ2

κ1

(
rD

∂G2,1(rD, r′
D, u, t′

D)
∂rD

) ∣∣∣∣∣∣
rD=r+

1D

(3-20)
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where u refers to Laplace’s variable. G1,1 denotes the Laplace domain impulse
response in Region I because of source positioning in this zone, while G2,1 is
the Laplace domain impulse response in Region II with the source placed in
the first region. r′

D represents the dimensionless spatial position of the source.
From the properties of the Dirac delta function, the absence of a source

at any point rD ̸= r′
D reduces Equation (3-15) to a homogeneous equation [27].

By definition, Equation (3-17) is also homogeneous. The general representation
of these equations is the widely known zero-order modified Bessel equations
[33], which possess a general solution given by:

G1,1(rD, r′
D, u, t′

D) =


A1I0 (rDz) + B1K0 (rDz) 1 < rD < r′

D < r1D
(3-21)

A2I0 (rDz) + B2K0 (rDz) r′
D < rD < r1D

(3-22)

G2,1(rD, r′
D, u, t′

D) = A3I0
(
rD

√
u
)

+ B3K0
(
rD

√
u
)

r1D
< rD < ∞ (3-23)

where I0(x) and K0(x) correspond to the modified zero-order Bessel function of
the first and second kinds. The constants Am and Bm, in which m = {1, 2, 3},
must be determined. These coefficients are obtained through boundary and
interface conditions and other requirements concerning GF properties. The z

factor is defined as:

z =
√

η2

η1
u. (3-24)

Employing the outer boundary condition, given by Equation (3-18), in
Equation (3-23), implies that A3 = 0 [33]. Thus:

G2,1(rD, r′
D, u, t′

D) = B3K0
(
rD

√
u
)

r1D
< rD < ∞. (3-25)

Calculating ∂rD
G1,1 from Equation (3-21) and then applying the inner

boundary condition, given by (3-16), yields:

A1I1 (z) − B1K1 (z) = 0. (3-26)

Replacing Equations (3-22) and (3-23) and their derivatives (∂rD
) at pres-



Chapter 3. Pressure-Pressure Convolution for a Single-Phase Flow in a
Composite Reservoir 30

sure and rate interface conditions, Equations (3-19) and (3-20), respectively:

A2I0 (r1D
z) + B2K0 (r1D

z) − B3K0
(
r1D

√
u
)

= 0, (3-27)

A2I1 (r1D
z) − B2K1 (r1D

z) + κ2

κ1

√
η1

η2
B3K1

(
r1D

√
u
)

= 0. (3-28)

At rD = r′
D, G function must be continuous [27]. Thus, from Equations

(3-21) and (3-22):

A1I0 (r′
Dz) + B1K0 (r′

Dz) − A2I0 (r′
Dz) − B2K0 (r′

Dz) = 0. (3-29)

To provide the delta function in Equation (3-13), the first derivative of
G must be discontinuous. To obtain this result, one can integrate Equation
(3-15) in the interval (r′

D − ϵ, r′
D + ϵ), and let ϵ → 0. Which leads to:

lim
ϵ→0

(rD
∂G1,1(rD, r′

D, tD, t′
D)

∂rD

)∣∣∣∣∣
rD=r′

D+ϵ

−
(

rD
∂G1,1(rD, r′

D, tD, t′
D)

∂rD

)∣∣∣∣∣
rD=r′

D−ϵ


= −κ2

κ1
exp(−ut′

D). (3-30)

The function G and its derivative are linear operators. Consequently,
the limit in Equation (3-30) can be applied separately to each sum term.
The derivatives of Equations (3-21) and (3-22) are used to solve this limit.
Therefore, if rD = r′

D − ϵ, then rD < r′
D, so the left-hand side sum term of

Equation (3-30) is replaced by the derivative of Equation (3-21). On the other
hand, if rD = r′

D + ϵ, then rD > r′
D and the right-hand is substituted by the

derivative of Equation (3-22). Hence:

− A1I1 (r′
Dz) + B1K1 (r′

Dz) + A2I1 (r′
Dz) − B2K1 (r′

Dz) =

−
√

η1

η2

κ2

κ1

exp(−ut′
D)

r′
D

√
u

. (3-31)

Finally, solving the system constructed with Equations (3-26) - (3-29),
and (3-31), the constants A1, B1, A2, B2, and B3 may be determined, making
it possible to find the answer for G.
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Thus, the Laplace transform of the impulse response G in each reservoir
region can be written as:

G1,1(rD, r′
D, u, t′

D) =

κ2

κ1
exp(−ut′

D)
[

I0 (rDz) K1 (z) + K0 (rDz) I1 (z)
K1 (z) f1 + I1 (z) (−f2)

]
[K0 (r′

Dz) f1 + I0 (r′
Dz) f2]

1 < rD < r′
D < r1D

, (3-32)

G1,1(rD, r′
D, u, t′

D) =

κ2

κ1
exp(−ut′

D)
[

I0 (r′
Dz) K1 (z) + K0 (r′

Dz) I1 (z)
K1 (z) f1 + I1 (z) (−f2)

]
[I0 (rDz) f2 + K0 (rDz) f1]

r′
D < rD < r1D

, (3-33)

G2,1(rD, r′
D, u, t′

D) =

κ2

κ1

√
η1

η2

exp(−ut′
D)

r1D

√
u

[
I0 (r′

Dz) K1 (z) + K0 (r′
Dz) I1 (z)

K1 (z) f1 + I1 (z) (−f2)

]
K0

(
rD

√
u
)

r1D
< rD < ∞, (3-34)

where:

f1 = K0
(
r1D

√
u
)

I1 (r1D
z) + κ2

κ1

√
η1

η2
I0 (r1D

z) K1
(
r1D

√
u
)

, (3-35)

f2 = K0
(
r1D

√
u
)

K1 (r1D
z) + κ2

κ1

√
η1

η2
K0 (r1D

z) K1
(
r1D

√
u
)

. (3-36)

The GFs (3-32) - (3-34) give a general formulation for impulse response
in a radially composite reservoir with a source in Region I.

Following the two-well system shown in Figure 3.3, one active well at rwD

and one observation well at D, the p-p convolution can be defined as proposed
by Kuchuk et al. [19]:
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Figure 3.3: Two-well interference test scheme in a heterogeneous system: active
and observation wells configuration.

∆p2D
(D, tD) =

tD∫
0

∆p1D
(1, tD − τ) G (1, D, tD) dτ. (3-37)

And in the Laplace domain, as follows:

∆p2D
(D, u) = ∆p1D

(1, u) G (1, D, u) . (3-38)
The G-function is obtained from Equation (2-5). Note that, for a com-

posite system, G is reached from the GF solution at the active and observation
well, i.e., by employing rD = 1.0 in Equation (3-32) and rD = D in Equation
(3-34). So, the impulse response solution at W1 and W2 is, respectively:

G1,1 (1, u) = κ2

κ1
exp(−ut′

D)
[

I0 (z) K1 (z) + K0 (z) I1 (z)
K1 (z) f1 + I1 (z) (−f2)

]
[K0 (z) f1 + I0 (z) f2]

(3-39)

G2,1 (D, u) = κ2

κ1

√
η1

η2

exp(−ut′
D)

r1D

√
u

[
I0 (z) K1 (z) + K0 (z) I1 (z)

K1 (z) f1 + I1 (z) (−f2)

]
K0

(
D

√
u
)
(3-40)

And thus, substituting Equations (3-36) and (3-37) into Equation (2-5)
yields:

G (1, D, tD) = L−1
{√

η1

η2

K0 (D
√

u)
r1D

√
u [K0 (z) f1 + I0 (z) f2]

}
(3-41)
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Implementing p-p convolution with the provided unit responses allows
evaluating the output response and the G-function.



4
Pressure-Pressure Convolution for a Two-Phase Flow

This chapter discusses the proposed model for applying p-p convolution
for a two-phase flow in a homogeneous medium. The system is shaped through
a radially composite scheme, similar to the model explored previously in
Chapter 3.

During an injectivity test, the oil displacement occurs by water injection.
Then, two regions can be formed: the flooded and the unflooded area. The flow
in a radial direction creates two concentric banks, one for water and the other
for oil. The fluid is uniformly distributed in the space, filling it with a specific
volume using the piston flow method. The fluids in each area exhibit different
properties, which results in a two-zone radially composite system, as illustrated
in Figure 4.1.

Figure 4.1: Two-phase radial flow scheme.

As water is injected, the flood-front position (denoted as rf ) moves along
with its progress. The Buckley-Leverett equation [34] is used to determine the
location of the flood-front at each time step and can be seen in Equation 4-1.

rf (t) =

√√√√√√r2
w +

t∫
0

qinj (τ) dτ

πϕh
f ′

w (Sw), (4-1)

where rf is called the waterfront radius, the interface radius splitting the two
banks in the reservoir. qinj,ϕ, h, and f ′

w (Sw) denote the injection flow rate, the
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reservoir porosity, the formation thickness, and the fractional flow derivative
in this sequence. Based on Equation (4-1), it is noticeable that the interface
between the two zones varies over time.

Water movement in the porous medium is assumed to be a piston-like
displacement. Initially, the relative permeability of oil is one, i.e., Kro = 1,
as the medium is completely saturated with oil. In this case, So = 1, and Sw

= 0. As the water begins to flow, the flooded bank starts to form. When the
medium is filled with water, the water saturation Sw is assumed to be one, i.e.,
So = 0 and Sw = 1. Consequently, the relative water permeability equals one
Krw = 1.

As a result, the fractional flow derivative (f ′
w) is calculated employing

Equation (4-2) [15, 16]:

f ′
w (Sw) = 1

1 − Swi − Sor

, (4-2)

where Swi is the irreducible water saturation and Sor the residual oil saturation.
Analogous to the heterogeneous model explained in the previous chapter,

the two-phase problem is characterized by a laterally infinite reservoir with
two fully penetrated vertical wells. The injection well is located at the water
zone in the system’s center, while the observation well is in the oil zone. A
representation of this model can be found in Figure 4.2.

Figure 4.2: Two-well interference test scheme during a two-phase flow.

As discussed in Chapter 3, the present analysis considers an isothermal
flow of slightly compressible fluid, adhering to Darcy’s law. The reservoir’s
initial pressure (pi) and parameters remain uniform and constant. Additionally,
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there is no flow resistance between the two regions, and both the skin and the
wellbore storage effects have been disregarded.

Equation (3-1) describes the diffusivity equation for each region. In the
two-phase model, the subscript j distinguishes between fluid properties. j = 1
refers to water bank properties within (rw ≤ r ≤ rf ), while j = 2 represents
oil bank properties for (rf ≤ r). rf constitutes the water-oil interface radius.

The hydraulic diffusivity (ηj) is defined as:

ηj = λj

ϕct

, where λj = κκrj

µj

(4-3)

where λj refers to fluid mobility. ϕ, ct, κ, κrj, and µj denote the reservoir’s
porosity, total compressibility, absolute permeability, fluid relative permeabil-
ity, and fluid viscosity, respectively.

The dimensionless variables are functions of the oil bank region prop-
erties, as demonstrated in Equations (3-3) to (3-5) in the previous chapter.
Hence, the system’s equations in dimensionless form are determined by:

– Region I (1 < rD < rfD
):

1
rD

∂

∂rD

(
rD

∂p1D
(rD, tD)
∂rD

)
− η2

η1

∂p1D
(rD, tD)
∂tD

= 0, (4-4)

IC: p1D
(rD, tD = 0) = 0, (4-5)

IBC:
(

rD
∂p1D

(rD, tD)
∂rD

) ∣∣∣∣∣∣
rD=1

= −λ2

λ1
; (4-6)

– Region II (r1D
< rD < reD

):

1
rD

∂

∂rD

(
rD

∂p2D
(rD, tD)
∂rD

)
− ∂p2D

(rD, tD)
∂tD

= 0, (4-7)

IC: p2D
(rD, tD = 0) = 0, (4-8)

OBC: lim
reD

→∞
p2(rD = reD

, tD) = 0; (4-9)



Chapter 4. Pressure-Pressure Convolution for a Two-Phase Flow 37

– Interface (rD = rfD
):

PCC: p1D
(r−

fD
, tD) = p2D

(r+
fD

, tD), (4-10)

RCC:
(

rD
∂p1D

(rD, tD)
∂rD

) ∣∣∣∣∣∣
rD=r−

fD

= λ2

λ1

(
rD

∂p2D
(rD, tD)
∂rD

) ∣∣∣∣∣∣
rD=r+

fD

.

(4-11)

This new formulation analyzes the pressure behavior in a two-phase flow
through a homogeneous reservoir using p-p convolution. As stated in this study,
obtaining the solution requires knowledge of the impulse response function
that characterizes the system’s geometry. For this purpose, one must find GFs
that satisfy the conditions specified in Equations (3-13) and (3-14). Chapter 3
provides detailed instructions on how to solve the associated Green problem.
The same methodology is used for a two-phase model, which comprises the
following system of equations:



C1I1 (z) − D1K1 (z) = 0, (4-12)

C2I0 (rfD
z) + D2K0 (rfD

z) − D3K0
(
rfD

√
u
)

= 0 (4-13)

C2I1 (rfD
z) − D2K1 (rfD

z) + λ2

λ1

√
η1

η2
D3K1

(
rfD

√
u
)

= 0 (4-14)

C1I0 (r′
Dz) + D1K0 (r′

Dz) − C2I0 (r′
Dz) − D2K0 (r′

Dz) = 0 (4-15)

−C1I1 (r′
Dz) + D1K1 (r′

Dz) + C2I1 (r′
Dz) − D2K1 (r′

Dz) =

= −
√

η1

η2

λ2

λ1

exp(−ut′
D)

r′
D

√
u

(4-16)

wherein C1, D1, C2, D2, and D3 are the constants to be determined. u is the
Laplace variable. I0(x) and K0(x) are the modified zero-order Bessel functions
of the first and second kinds, and I1(x) and K1(x) are their corresponding
derivatives.

The general solution G in Laplace Domain is reached by solving the
system shaped by Equations (4-12) through (4-16):
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G1,1(rD, r′
D, u, t′

D) =

λ2

λ1
exp(−ut′

D)
[

I0 (rDz) K1 (z) + K0 (rDz) I1 (z)
K1 (z) f3 + I1 (z) (−f4)

]
[K0 (r′

Dz) f3 + I0 (r′
Dz) f4]

1 < rD < r′
D < rfD

; (4-17)

G1,1(rD, r′
D, u, t′

D) =

λ2

λ1
exp(−ut′

D)
[

I0 (r′
Dz) K1 (z) + K0 (r′

Dz) I1 (z)
K1 (z) f3 + I1 (z) (−f4)

]
[I0 (rDz) f4 + K0 (rDz) f3]

r′
D < rD < rfD

; (4-18)

G2,1(rD, r′
D, u, t′

D) =

λ2

λ1

√
η1

η2

exp(−ut′
D)

rfD

√
u

[
I0 (r′

Dz) K1 (z) + K0 (r′
Dz) I1 (z)

K1 (z) f3 + I1 (z) (−f4)

]
K0

(
rD

√
u
)

rfD
< rD < ∞; (4-19)

where:

f3 = K0
(
rfD

√
u
)

I1 (rfD
z) + λ2

λ1

√
η1

η2
I0 (rfD

z) K1
(
rfD

√
u
)

, (4-20)

f4 = K0
(
rfD

√
u
)

K1 (rfD
z) + λ2

λ1

√
η1

η2
K0 (rfD

z) K1
(
rfD

√
u
)

. (4-21)

Therefore, the pressure unit-response in the Laplace Domain during an
injectivity test for an injection and observation wells, respectively, is given by:
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G1,1 (1, u) = λ2

λ1
exp(−ut′

D)
[

I0 (z) K1 (z) + K0 (z) I1 (z)
K1 (z) f3 + I1 (z) (−f4)

]
[K0 (z) f3 + I0 (z) f4]

(4-22)

G2,1 (D, u) = λ2

λ1

√
η1

η2

exp(−ut′
D)

rfD

√
u

[
I0 (z) K1 (z) + K0 (z) I1 (z)

K1 (z) f3 + I1 (z) (−f4)

]
K0

(
D

√
u
)
(4-23)

Substituting Equations (4-22) and (4-23) into Equation (2-5) and sim-
plifying the generated expression leads to the G-function, the p-p convolution
kernel for a system characterized by a two-phase flow in a homogeneous reser-
voir:

G (1, D, tD) = L−1
{√

η1

η2

K0 (D
√

u)
rfD

√
u [K0 (z) f3 + I0 (z) f4]

}
(4-24)



5
Results and Discussion

In order to assess the effectiveness of the model outlined in Chapters 3
and 4, a thorough comparison will be made among the numerical outcomes
generated by this new method and the results obtained from existing models
in literature and a reservoir simulator’s outputs. The objective is to confirm the
new approach’s reliability and consistency and to validate its accuracy through
convergence testing. The inversion of numerical Laplace solutions into the time
domain was achieved using the algorithm established by Stehfest (1970) [20].

The model will be evaluated in three stages:

– single-phase flow in a homogeneous medium;

– single-phase flow in a heterogeneous medium;

– two-phase flow in a homogeneous medium.

For the first scenario, it is assumed that the reservoir properties, such
as permeability, are uniform throughout the reservoir. The findings presented
by Kuchuk et al. [19] will serve as a benchmark for comparison. In the second
scenario, each zone within the reservoir has unique properties, while in the third
scenario, two zones are formed with differing fluid properties. The results of
these scenarios will be compared to a commercial simulator that utilizes finite
differences to conduct accurate calculations. For all cases, the wells have a
wellbore radius rw of 0.108 m, the initial pressure pi is 300.0 kgf/cm2, and the
model does not consider any storage or skin effects.

5.1
Comparing the Results of the Line-Source Scenario

A scenario is assumed in which the proposed reservoir model is homo-
geneous, assigning the same attributes to the inner region of the reservoir as
those of the outer area. Table 5.1 displays the considered reservoir properties
for the homogeneous situation.
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Case Region κ [mD] µ [cP ] h [m] ϕ ct [cm2/kgf]
I

250 5.1 20 0.25 1.2 × 10−55.1
II

Table 5.1: Reservoir properties for a scenario involving single-phase flow in a
homogeneous medium.

5.1.1
Example 1

The active well was taken from the observation well at a dimensionless
distance of D = 90.0. The interface radius measures r1D

= 15. Figures 5.1
and 5.2 illustrate the plot of dimensionless pressure transient behavior and
the log-log plot of the dimensionless pressure derivative, respectively, for the
formulation suggested in this work as well as the line-source solution derived
from [19] for both wells. The outcomes of this proposed model are represented
by the dashed line with the circle marker, whereas the solid line denotes the
results obtained from [19] formulations.

Results reveal a notable agreement, as seen in Figure 5.1. For the active
well solutions (∆P 1,1

D ), characterized by black and pink colors, it’s possible to
see a slight disagreement at initial times. It can be explained due to the unit
impulse response function in Equations (3-32) - (3-34) for a source located at
r′

D = 1.0 and t′
D = 1.0. The exponential term is a function of t′

D, and the
values are too small in the early stages. So, the pressure behavior changes
during initial times because the value is decreased. To the observation well
(∆P 2,1

D ), the pressure data at a short time is close enough to zero in both
formulations, so this difference is negligible.
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Figure 5.1: Semi-log plot comparing dimensionless pressure values in an infinite
homogeneous reservoir for the Example 5.1.1. The graph presents the results
from [19] and this work, calculated by Equations (3-32) and (3-34), in a two-
well system.

In Figure 5.2, the derivative curves converge nicely to a 0.5 horizontal
line. It means that the logarithmic pressure derivative from this work reaches
an infinite-acting radial flow regime for both wells, in conformity with [19].
The pressure derivative behavior for the active well (∂∆P 1,1

D ), Figure 5.2(a),
identified by pink circles, just like the pressure transient response event, shows
a divergence in the early periods owing to the position of the source in time
and the exponential function. The observation well outcomes, designated by
red circles and dark green solid line in Figure 5.2(b), demonstrate an optimal
alignment between the solutions, with minimal discrepancies at the initial
times.
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5.2(a): Active well Pressure Derivative Plots

100 102 104 106 108 1010

t
D

10-25

10-20

10-15

10-10

10-5

100

 
P

D

Observation Well Pressure Derivative

0.5 horizontal line

P
D

2,1
 from this work

P
D

2,1
 from Kuchuk  et al.,(2010)
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Figure 5.2: Log-log plot of dimensionless pressure derivative vs. time for active
and observation well in an infinite homogeneous reservoir for the Example
5.1.1.

The pressure resultant at the spatial position rD = D is obtained by com-
puting p-p convolution between the G-function of the system (Equation (3-41))
and the pressure at the dimensionless wellbore radius location, rD = 1.0. The
G-function behavior can provide the flow-regime identification and the diag-
nosis of the interpretation model to be employed in parameter estimation [19].
The Bourdet derivative, the tG-function, is also applied for model interpre-
tation purposes via analyses of its log-log curve. The pair of Figures 5.3(a)
and 5.3(b) display in sequence the G-function and tG-function conduct for the
two-well interference test studied.
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This study’s G-function curve, marked by pink circles in Figure 5.3(a),
closely fits the [19] output (represented by a solid black line) with a negative
unit slope marking the onset of the radial flow regime, as expected. It is
noticeable that during the late stages, the slope of the curve cuts through
the grid cell, dividing its 90-degree angles approximately in half. As a result,
calculating the arc-tangent of −45° can confirm the presence of the negative
unit slope.

Figure 5.3(b)’s tG-function plot shows a similar trend, with a great match
between the results of this work and from [19] and the possibility of identifying
the flow regime from the curve’s slope, which suggests the flow phase radial,
as the behavior of the graph of tG-function asymptotically approaches the
zero-slope line at the end-stage.
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5.3(a): Log-log plot of G-function
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5.3(b): Log-log plot of tG-function

Figure 5.3: Log-log plot of the G-function and the logarithmic derivative tG-
function vs. time for two-well testing in an infinite homogeneous reservoir for
the Example 5.1.1.

5.1.2
Example 2

In the second example, there is an increased distance between the wells,
and the radius separating the two media is also wider. The active well was
chosen from the observation well at a dimensionless distance D = 230.0.
The interface, which separates the two different regions, has a radius size of
r1D

= 80.0. The other reservoir properties are the same as in Example 5.1.1.



Chapter 5. Results and Discussion 46

Figure 5.4 shows the graphical representation of dimensionless pressure
data. The dashed line with a circle marker denotes the results obtained by this
research work. In contrast, the solid line represents the outcomes derived from
the reference [19]. Once again, a satisfactory agreement between the responses
can be observed, except for the initial times at the production well (∆P 1,1

D ). The
impulse action influences these early-time responses in the source at r′

D = 1.0
and t′

D = 1.0, as demonstrated in the Example 5.1.1.
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Figure 5.4: Semi-log plot comparing dimensionless pressure values in an infinite
homogeneous reservoir for the Example 5.1.2. The graph presents the results
from [19] and this work.

Regarding the pressure derivative, Figure 5.5 illustrates the log-log plots
of dimensionless pressure derivative data and dimensionless time. For both the
producer well and the observation well (Figures 5.5(a) and 5.5(b), in order), the
results suggest an infinite-acting radial flow where the curves tend towards a
straight horizontal line with a y-intercept of 0.5, which is the expected outcome
[19]. And similar to Example 5.1.1, the initial times deviate from that constant
level as a consequence of the source situation for the active well while having
a negligible influence on the observation well.
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Figure 5.5: Log-log plot of dimensionless pressure derivative vs. time for active
and observation well in an infinite homogeneous reservoir for the Example
5.1.2.

The shape of the log-log chart of the functions G and tG are depicted in
Figures 5.6(a) and 5.6(b) demonstrate conformity with the features presented
by the functions G and tG in Section 5.1.1. Both functions indicate the presence
of a radial flow regime during later stages. This is evidenced by the G-function’s
line with an inclination of approximately −45° and the tG function’s line with
an inclination of roughly 0° as indicated by Kuchuk et al. [19].
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5.6(a): Log-log plot of G-function
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Figure 5.6: Log-log plot of the G-function and the logarithmic derivative tG-
function vs. time for two-well testing in an infinite homogeneous reservoir for
the Example 5.1.2.

5.2
Comparing the Results of the Heterogeneous Scenario

In a scenario characterized by heterogeneity, the rock parameters exhibit
variations across different reservoir sections. Thus, two examples illustrate the
heterogeneous outcomes by incorporating different permeability values. These
examples illustrate the impact of variability on pressure behavior. In both
examples, the monitoring well is positioned at a dimensionless distance of
D = 291.06 from the operating well, with an interface radius with measures
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r1D
= 68.15. The source is positioned at r′

D = 1.0 and t′
D = 0.0. The parameters

are listed in Table 5.2. This analysis will also disregard storage and skin effects
like the approach used in the previous section (Section 5.1).

Case Region κ [mD] µ [cP ] h [m] ϕ ct [cm2/kgf]
I 500

5.1 25.0 0.3 2.342 × 10−45.2.1
II 2000
I 2000

5.1 25.0 0.3 2.342 × 10−45.2.2
II 500

Table 5.2: Reservoir properties for heterogeneous medium.

5.2.1
Example 1

Figure 5.7 displays the dimensionless pressure response of a two-zone
composite reservoir. The charts compare the solutions from the reservoir
simulator and the outcomes of the suggested model, computed using Equations
(3-39) and (3-40) assuming regions with different permeabilities in a two-well
system. The solid black line and pink circles graphs point out the measured
pressure at the operation well (∆P 1,1

D ). The solid dark green line and red
circles graphs reference the pressure response at the monitoring well (∆P 2,1

D ).
The inflection points observed at the ∆P 1,1

D curves mean a shift in permeability
across the medium. The graphs show a remarkable similarity between the data
collected from both sources.
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Figure 5.7: Semi-logarithmic plot comparing the dimensionless pressure values
for a two-well interference testing in an infinite heterogeneous reservoir for
the Example 5.2.1. The plot shows the results from the reservoir simulator
solution alongside the outcomes generated by the proposed model for an infinite
heterogeneous reservoir.

The log-log plot of the dimensionless pressure derivative for both wells
can be verified in Figures 5.8(a) and 5.8(b). The chart displays an upswing
of the derivative response values up to the horizontal line at y = 2.0,
characterizing a relationship where one permeability is four times greater than
the other, as shown in Table 5.2. Afterward, the values decrease and converge to
the horizontal line y = 0.5, indicating an infinite-acting radial flow [19]. When
comparing the values of the derivatives, slight dissimilarity can be observed,
primarily caused by differences in the treatment of the numerical tests, like the
approximation error. In the derivative pressure values at the observation well
(∂∆P 2,1

D ), it is apparent that the simulator’s curve is absent during the initial
times. The simulator does not provide derivative values at the early stages
because it outputs zero values. However, this differs from the proposed model’s
numerical experiments, where the values are very close to zero. In addition,
similarly to the derivative pressure value in the active well, the values in the
observation well also stabilize around the threshold of 0.5.
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Figure 5.8: Log-log plot of dimensionless pressure derivative vs. time for
active and observation well in interference testing in an infinite heterogeneous
reservoir for the Example 5.2.1.

Figures 5.9(a) and 5.9(b) exhibit the G and tG graph produced by the
model proposed in this work. As time progresses, the G-function gradually
approaches a line with a negative unit-slope, while the tG-function conforms
to a line with a zero-slope. These observations align with the expected pattern
for an infinite radial flow regime [19].
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5.9(a): Log-log plot of G-function
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Figure 5.9: Log-log plot of the G-function and the logarithmic derivative tG-
function vs. time for a two-well interference testing in an infinite heterogeneous
reservoir for the Example 5.2.1.

5.2.2
Example 2

As in Example 5.2.1, the measurement for D is 291.06, while r1D
measures

68.15. Based on the information in Table 5.2, the inner region has a higher
permeability.

Figure 5.10 displays the trends of dimensionless pressure values over time
for both the active and observation well. The solid lines indicate the pressure
data collected from the simulator, and the circular graphs are based on the
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numerical results obtained in this study. The resultant pressure data from both
origins exhibit similar behavior and are closely aligned.
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Figure 5.10: Semi-logarithmic plot comparing the dimensionless pressure values
for a two-well interference testing in an infinite heterogeneous reservoir for the
Example 5.2.2. The plot includes results from the reservoir simulator and the
outcomes for an infinite heterogeneous reservoir obtained from the proposed
model.

Figures 5.11(a) and 5.11(b) depict the log-log derivative plot arrange-
ment. Both solutions exhibit a horizontal asymptote given by the function
y = 0.5, denoting an infinite-acting radial flow regime [19]. Initially, for ∂∆P 1,1

D

(Figure 5.11(a)), the pressure differential increases until it reaches the thresh-
old of 0.125, indicated by the dotted horizontal line. It reveals a 1 : 4 inverse
proportionality between the internal and external regions. Afterward, the pres-
sure continues to increase and levels off at 0.5. In the case of ∂∆P 2,1

D , like in
Example 5.2.1, the pressure derivative values at the observation well, referring
to the simulator data, are zero during the initial times. As a result, these values
are not present on the graph. Furthermore, the values of the proposed model
gradually move towards the 0.5 horizontal line.
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Figure 5.11: Log-log plot of dimensionless pressure derivative vs. time for
active and observation well in a two-well interference testing in an infinite
heterogeneous reservoir for the Example 5.2.2.

Figures 5.12(a) and 5.12(b) show the G and tG graph generated by the
proposed model. As time elapses, the G-function tends towards a negative
unit-slope line, while tG-function asymptotically approaches a zero-slope line,
a known pattern for an infinite radial flow regime, as shown by [19].
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5.12(a): Log-log plot of G-function
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Figure 5.12: Log-log plot of the G-function and the logarithmic derivative tG-
function vs. time for a two-well interference testing in an infinite heterogeneous
reservoir for the Example 5.2.2.

5.3
Comparing the Results of the Two-Phase Scenario

This scenario involves a reservoir that is considered to be homogeneous,
with water used as the injected fluid. As a result of the water displacing oil,
two zones are formed due to their different properties. The interface radius
(rf ) is determined by the advancing front of the water, which is given by
Equation (4-1). Consequently, the interface is no longer stationary and becomes
a time-dependent function. In addition, a piston-like model is used to estimate
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the propagation of the waterfront. Krw = 1 if the medium is saturated with
water. Kro = 1 when water is absent. The monitoring well is positioned at
a dimensionless distance of D = 291.06 from the operating. The source is
positioned at r′

D = 1.0 and t′
D = 0.0. Table 5.3 lists the parameters applied

in the study. This analysis will not assume storage and skin effects like the
approach taken in Section 5.2.

Case Region κ [mD] µ [cP ] h [m] ϕ ct [cm2/kgf]
I

2000
0.51

25.0 0.3 2.342 × 10−45.3
II 5.1

Table 5.3: Reservoir properties for a homogeneous medium under two-phase
flow.

Figure 5.13 depicts the behavior of dimensionless pressure values over
time for injecting and monitoring wells. The continuous lines represent the
pressure data acquired from the simulator, while the circular graphs correspond
to the numerical outcomes derived from this investigation. The graphs show a
consistent pattern with a slight disparity in pressure values in later stages.
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Figure 5.13: Semi-logarithmic plot comparing the dimensionless pressure values
for a two-well interference testing in an infinite homogeneous reservoir during
two-phase flow for the Example 5.3. The plot includes results from the reservoir
simulator and those from an infinite two-phase system obtained from the
proposed model.

Figures 5.14(a) and 5.14(b) depict the log-log derivative graph. The
function y = 0.5 is initially approached by the derivative ∂∆P 1,1

D (Figure



Chapter 5. Results and Discussion 57

5.14(a)) due to dimensionless modeling by oil properties and fluid distribution
over time. The variation in values within the transition region may be due to
the different calculation methodologies used by the simulator compared to the
approach adopted in this study. Furthermore, the reservoir simulators calculate
the average pressure in different blocks. Discretizations may not fully capture
variations, leading to significant errors in pressure estimation in regions with
abrupt changes in reservoir properties. For ∂∆P 2,1

D (observe 5.14(b)), as seen
in Example 5.2, the pressure derivative values from the simulator are initially
zero at the observation well. Therefore, these values are not displayed on the
graph. The proposed model’s values also converge to y = 0.5, indicating an
infinite-acting radial flow regime [19].
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Figure 5.14: Log-log plot of dimensionless pressure derivative vs. time for a
two-well interference testing in an infinite homogeneous reservoir during two-
phase flow for the Example 5.3.

Figures 5.15(a) and 5.15(b) show the graphs for G and tG resulting from
the proposed model. The G-function values converge to a unit line of negative
slope over time, while the tG-function approaches a zero-slope line in the end
stages with a slight deviation. This deviation is minor enough to preserve the
characteristic behavior of an infinite radial regime [19].
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5.15(a): Log-log plot of G-function
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Figure 5.15: Log-log plot of the G-function and the logarithmic derivative tG-
function vs. time for a two-well interference testing in an infinite homogeneous
reservoir during two-phase flow for the Example 5.3.

The results show close alignment upon comparison, indicating that the
proposed model is reliable and consistent and can be a valuable tool for
analyzing and predicting pressure behavior without accurate flow rate data.



6
Conclusion and future work

This study proposes a novel technique for interpreting well testing in a
composite reservoir system. The suggested approach involves simultaneously
utilizing a radially composite reservoir model with the pressure-pressure con-
volution method [17] to obtain pressure behavior for heterogeneous reservoirs
and homogeneous reservoirs during a two-phase flow while circumventing any
uncertainties that may arise from flow rate measurements. The composite reser-
voir comprises two distinct regions, each with its own well: an operation well
in the inner region and a monitoring well in the outer region (see Figures 3.3
and 4.2). In this process, a unit rate production source is positioned in the
active well to engender a response in the system. Next, the unit impulse re-
sponse, also called Green’s function, is calculated to depict how each well in
the system responds to this influence. This information is used to establish the
kernel of the pressure-pressure (p-p) convolution, which enables the diagnosis
of reservoir parameters and the flow regime and the determination of pressure
changes at both wellbores.

Three steps were used to validate the proposed solution. The first method
involved directly comparing the results of the homogeneous model - the line-
source solution - with those previously published by Kuchuk et al. [19]. The
second method involved comparing the outputs of a commercial simulator
based on finite differences with this study’s outcomes for a heterogeneous and
a two-phase model by analyzing their respective behaviors.

In the homogeneous case, two examples were provided. The first example
had a smaller interface radius and well spacing than the second one. The
findings of both examples were great when compared to the numerical results
derived from Kuchuk et al. [19]. Although the findings at the initial times
reveal a slight disparity due to the source’s activity, a great agreement was
observed between the numerical data.

The analysis of the system’s heterogeneity was also conducted based
on two examples. The heterogeneity was incorporated by assigning different
permeability values to each zone of the composite reservoir. In the first
example, the internal region was assigned a permeability value four times
smaller than the external region’s. In contrast, in the second example, the
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internal zone’s permeability value was four times higher than in the outer zone.
This relationship between the permeability information, directly or inversely
in a four-to-one ratio, is reflected in the pressure derivative data. Furthermore,
G-function and tG-function exhibited a quite fitting behavior in line with what
is presented in the literature.

The findings from the two-phase scenario, which incorporates variations
in fluid properties and the dynamic movement of the waterfront radius during
injection, align consistently with the calculated outputs from the flow simula-
tor. G-function and its Bourdet derivative also revealed appropriate behavior
in line with established literature.

After comparing the results, it is noticeable that they are closely matched,
suggesting that the proposed model holds great promise and can be an effective
tool for analyzing and predicting pressure behavior even without flow rate
information.

For future work, we intend to expand the developed model, including
the effects of skin and wellbore storage, which were neglected in this study.
Addressing these effects is significant because during an interference test, the
impulse response function, G-function, can be affected by the wellbore storage
at the monitoring well and the skin factor at the operation well. The proposed
model can incorporate both of these conditions. One can use the expression
developed by Van Everdingen & Hurst (1949) [28] to account for wellbore
storage. To account for the impact of skin effect on the model, a three-zone
radially composite model can be adopted [15]. This model includes the skin
parameters within the inner zone. By implementing these changes, the model
for analyzing transient pressure when flow data is unavailable or uncertain will
become more robust.

In addition, the model presented provides a flexible solution for applica-
tions that depend on radially composite-based approaches, such as modeling
two-phase flow in multilayer reservoirs. It can be achieved because the pres-
sure data can be collected horizontally or vertically within a formation for
pressure-pressure convolution, as mentioned in this study.
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A
Derivation of the Pressure-Pressure Convolution Equations

This appendix presents a detailed development of the pressure-pressure
convolution formulation discussed in Chapter 2.

A two-dimensional infinite radial model is assumed (Fig. 2.3), comprising
an active well and an observation well separated by a distance of D. In this
model, wellbore storage and skin effects are not considered. Thus, the p-r
convolution for the active well in the time domain can be calculated using the
following equation:

∆p1 (rw, t) =
t∫

0

q1 (τ) g1,1 (rw, t − τ) dτ (A-1)

After applying the Laplace transform,

∆p1 (rw, u) = q1 (u) g1,1 (rw, u) , (A-2)

Similarly, at the observation well, the pressure response in the time
domain can be obtained by:

∆p2 (D, t) =
t∫

0

q1 (D, τ) g2,1 (t − τ) dτ (A-3)

Upon performing the Laplace transform, the result is as follows:

∆p2 (D, u) = q1 (u) g2,1 (D, u) (A-4)

In the given context, the subscripts 1 and 2 are associated with W1

and W2, respectively. q1 represents the production rate at the active well.
Furthermore, g1,1 denotes the unit-impulse response at the active well caused
by the constant source. Additionally, g2,1 refers to the unit-impulse response
at the observation well, W2, resulting from production at W1. Additionally, u
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represents the Laplace variable, and the overlined variables indicate that they
are in the Laplace domain.

Equations (A-2) and (A-4) share the flow-rate term. So, dividing one
equation by the other leads to the subsequent formulation:

∆p2 (D, u) = ∆p1 (rw, u)
g2,1 (D, u)
g1,1 (rw, u) (A-5)



B
The Auxiliary Problem for Green’s Function

This appendix explains how Green’s function definition is associated
with the dimensionless government equations presented in Equations (3-6) and
(3-7), along with their initial, boundary, and interface conditions, respectively
defined in Equations (3-8) - (3-12). The goal is to determine Green’s function G,
which satisfies Equation (3-13) and produces the pressure-pressure convolution
kernel.

The source is located only in the area between rw and r1 as illustrated
in Figure 3.2. Outside of this zone, there is no source. The impulse response
in Region I, denoted by G1,1, and in Region II, indicated as G2,1, results from
this source. As a consequence, the dimensionless equations that govern Region
I and II are stated as:

– Region I (1 < r′
D, rD < r1D

):

1
rD

∂

∂rD

(
rD

∂G1,1(rD, r′
D, tD, t′

D)
∂rD

)
− η2

η1

∂G1,1(rD, r′
D, tD, t′

D)
∂tD

=

= −κ2

κ1
δ(rD − r′

D)δ(tD − t′
D); (B-1)

– Region II (r′
D < r1D

< rD < reD
):

1
rD

∂

∂rD

(
rD

∂G2,1(rD, r′
D, tD, t′

D)
∂rD

)
− ∂G2,1(rD, r′

D, tD, t′
D)

∂tD

= 0; (B-2)

It is possible to see in Equation (B-1) the presence of the source on the right
side of the equation, whereas in Equation (B-2), the absence of the source is
noticeable.

The initial conditions are expressed as follows:

IC: G1,1(rD, r′
D, tD, t′

D) = G2,1(rD, r′
D, tD, t′

D) = 0 tD < t′
D (B-3)
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Furthermore, it is noted that G = 0 at the boundary by Equation (3-14).
Thus, the boundary conditions can be expressed in the succeeding manner:

IBC:
(

rD
∂G1,1(rD, r′

D, tD, t′
D

∂rD

) ∣∣∣∣∣∣
rD=1

= 0, 1 < r′
D, rD < r1D

, (B-4)

OBC: lim
reD

→+∞
G2,1(rD = reD

, r′
D, tD, t′

D) = 0 r′
D < r1D

< rD < reD
; (B-5)

Applying the Equation (3-13) to the interface conditions yields the
following associated problem:

– Interface (rD = r1D
):

PCC: G1,1(r−
1D

, r′
D, tD, t′

D) = G2,1(r+
1D

, r′
D, tD, t′

D), (B-6)

RCC:

(
rD

∂G1,1(rD, r′
D, tD, t′

D)
∂rD

) ∣∣∣∣∣∣
rD=r−

1D

= κ2

κ1

(
rD

∂G2,1(rD, r′
D, tD, t′

D)
∂rD

) ∣∣∣∣∣∣
rD=r+

1D

(B-7)

The equations provided in the chapter can be utilized to determine the
impulse function for each well in the system.
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